@Moderator said in VOXL ESC Mini 4-in-1 Current per Motor:
Is it possible to step up voltage?
Can you please clarify the question? 🙂
Mini ESC is designed for small drones ( < 500g ). The ESC has been tested to handle 15A continous at 15V input continuously (60+ seconds), but with full direct air flow from propellers. This would simulate a full throttle "punch-out" on a small FPV drone (high current, but also lots of direct airflow = cooling). Do not use this ESC if the drone needs 10-15A per channel just to hover. Use it in application where hover current per motor is less than 5A (ideally 2-3A which is very typical) and absolute maximum continuous current per motor can be 10-15A.
For example, motors used for small FPV drones often are around 1306 size (3-4S Lipo). Those motors are usually rated for up to 10-12A continous (for 30-60 seconds). Larger motors can be used as long as maximum motor current does not exceed 10-15A (still 2-3A at hover) and there is sufficient cooling.
Always check ESC board temperature during initial flights / tuning. Temperature must stay below 110C at all times (critical), typically in the range of 40-70C for most applications. The ESC will most likely fail above 125C.
Temperature of the ESC board is the limiting factor because the board is so small. Mosfets can handle a lot of current as long as they don't overheat. So the design of the drone is very important (either use low current so that temperature is not an issue or properly design air flow from propellers and/or add heat spreader to keep the ESC board temperature in normal range for higher current draw applications).
ESC provides real time temperature feedback and it can be viewed in PX4 / QGC. Additionally, the PX4 logs contain the temperature information.